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ABSTRACT

The report analyzes the two-phase thrust bearing near the
axis of rotation where the radial pressure gradient is non
zero and the viscosity is negligible for the gaseous phase.
The analysis agrees with the previous work by Sparrow and
Gregg (2) for condensate thickness for the limiting case of
zero pressure gradient. With radial pressure gradients,
the condensate thickness is seen to have the chance of re-
evaporation due to the change of vapor temperature in the
radial direction. The sensitivity of the condensate thick-
ness to temperature difference is noted. This work is part
of the complete analysis of the two-phase thrust bearing
being studied.
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1.0 INTRODUCTION

The study presented in this report contains. the analysis of the two
phase, externally pressurized, thrust bearing in the area near the axis
of rotation. This area of the thrust bearing is considered to be Regions

II and III, as indicated previously in Reference 1. (See Figure 1.)

Sparrow and Gregg (2) solved the problem of condensation on a rotating
disk with no radial pressure gradient by using the similarity sub-
stitutions which Von Karman previously introduced for the rotating disk
problem, that is,

u,,”('(w , Ak:/b](g) , wr= -2 £(y)
This 1is possible because the temperature boundary conditions at the inter-
face and disk surface are independent of the radius r. The substitutions
reduce equations (1) and (2) to differential equations in z only. The
condensate rate dependent on w is then seen to satisfy the temperature

boundary conditions, as well as the equations of motion.

Sparrow and Gregg solved the set of nonlinear differential equations by
computer, and noted that, if in equations (1) and (2) after the similar-
ity substitutions are made the inertial terms are neglected compared to
the viscous forces, the solution is easily evaluated. The results of this

formulation led to the results
% “ /car
A(%z) (z ) ( (a)

The same problem can also be analyzed by using the approximate integral

method. (See Appendix.) This method again leads exactly to equation (a)
%
for the condition that( CAT— is small. The range of interest of this

parameter for the problem under study can thus be considered equivalent
to neglecting the inertial terms. The results of this analysis are shown

in Figures 2 and 3, and explained in the Appendix.



The corresponding problem of a thrust bearing does not generally permit
the assumptions of zero radial pressure gradient. The acceleration of
the vapor flow in the radial direction does, in fact, have a pressure
gradient in the case of a bearing, thus requiring the consideration of
the pressure gradient and its effect on the condensate thickness and

temperature in the vapor.

2.0 ANALYSIS

The problem can be conveniently formulated in cylindrical coordinates,

where the coordinate of z is taken as the axis of rotation. Angular
symmetry is assumed, that is, 8/00 = 0. The physical problem is
represented by a rotating disk upon which condensate forms due to a

temperature difference between the surface of the disk and vapor.

Cross Section
of Condensate

The analysis of the two regions, that is, II and III, is done
simultaneously with the following assumptions:

1. Interface shear at h(r) between the vapor and liquid

phases is assumed zero; hence, %5 = %% =0 at z = h.

2. The radial pressure gradient,%%, is the same for the

liquid and the vapor (that is, %& = 0) and for this

problem will be an assumed known function determined

solely by the vapor flow and geometry of the region.
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2.1 Formulation of the Equations of
Motion, Continuity, and Energy

The equations of motion for an incompressible fluid in cylindrical

coordinates (3), with axial symmetry, can be written as

U 07U _ 2 /"_a_f b
= 1 — e Y. = %K ‘OM W }
s DYy A ’D/L +3 7%1_ @/\,( )
Yy 2
Eg e RGO e

w” A~ L
F WS o oW (3)
¥ 2% /9 ! °{7w A /»*‘03”}

The equation of continuity if

?
£2 () = -2 @
2
The energy equation can be written as
’DZ%%L = & (5)

which is the well known Nusselt approximation where dissipation is
neglected and the predominate mode of heat transfer is by conduction

axially across the condensate thickness.

At this point, it is well to consider a limiting condition of the
equations of motion and its effect on the formulation of the method

of solution.

This problem does not permit the similarity substitutions. However,

it can be formulated by using the momentun integral technique. The
22U AR v i e

> s #)‘%_ZL are made in addition

assumptions that‘%i_
3+
to the previous assumptions. Note that as ;2 #e, due to symmetry, %2 - 0

if no sources are present. Furthermore, if 2!1 Cxaf) the equations of

motion will permit the similar solutions of Von Karman (that is, ldsquéjetc)
The special case of A = 0, is that which was solved by Sparrow and Gregg.

-3-



The problem of condensation with %Df -'¥ O will be formulated
for the general case where the inertial terms are not neglected.
The value of DF 1is assumed a known function of r. However,
since it has Eé:n shown in the case for ((_‘?’% = © that neglecting
inertial terms in comparison to viscous terms was equivalent to
the case of small film thickness or low heat transfer rates,
this assumption will be made subsequently.to simplify

the problem where the pressure gradient is non zero.

2.1.1 Momentum Integral Equations
for the General Case

Equations (1) and (2) , ‘neglecting higher order

viscous terms (that is, DU S DU D >‘D"gc— ,etc.)

R TR TR

become
udk 20U v .~ l2p 4 9
T 2 3 / '35,L

N

WPr + WOy v YO~
n Ty ¥ = D:D'g:v

From equation (4), w at z = h, can be written as

A
we i | 5 (euldy

Equation (6) can be integrated over the condensate

layer thickness, resulting in

h . )
/o {walh+ K2 (ru) & -}{g(m)}dg-bfw_%

= - 79
where F~ln) Z.-,b-f

and ?’i‘ﬂ- 8/“%%(? y=o
Uaw(y=h)

“lpm

(6)

(N

(8)



The following identities,

U L O t)_ U 13
U =L 2 (hut) - 2L 2 (aw) a3
and
0 = ) VU
£B () T L rw) + 2T

are substituted into equation (9 ) resulting in

h
%f;ku(U'u)da + _ALu(U-u)Ab + %[fé&.u)“b’

h o
,.VA[%'rhz_‘-‘iU —/0 ertdy - G,

22U 4 r (15)
Similarly, equation 7, can be integrated, which results in
h L h
0 3 2 - dv, v~ / . .
’D'b-/“ u(VV)Ji + /Tl u{'\/‘%)e/g 4 (Eig%/o(v u)db h,li/
= ?’u
.1 (16)
r
where
..2:59 :/22_/
e 23 I1¥=o an

The following identities can be made:

A _a

C e,
8 v v'i-g" dy

19)

h
E.UV - [ vV (gily 20



+ /"Zf( £)d,
U=, / & (21)

U .
where 3( = ; and ?""' 1-% (22a), (22b)

Using equations (18) -- (22b), equations (15) and (16)

can be written as

%_(QU"),%/QU‘) 4 U%(ﬁ*_h}#vé[ﬁuff/_b)+%z)

. (23)
- .QILZ = Z:ila.
R F

and
s (Q,.JUV) t2 ( Q. UV)+ /Vﬁf'*%v/ﬂ*-h) . % (24)

Equations (23) and (24) are thus the Momentum Integral

Equations for the case of rotational symmetric flow.

In order to solve these equations, velocity profiles for
both u and v, (hence, f and g) are assumed to be polynomials

in z.

2.1.1.1 Velocity Profiles

Radial Velocity Profile

The radial velocity profile f, is assumed to be a fourth

order polynomial in 7, where n = z/h.

Hence, {[7).a.7f 67" 4 673 -+ 174' (25)



The conditions imposed on the radial velocity profile are

= = = L2 - C e — (Fl) +re®

T
yohy weTy Yz, o Uyy e - [FLar +X1 -ULD ]

In terms of f, and 7

9=, f29, _ﬁf[r("')d-"d]

L = =0 - 2 N d
7/)]”) ,z7 ’ f,m__%[f;u% v]

These boundary conditions are representative of the physical con-
ditions imposed, as well as satisfying the original differential equations.

Using the boundary conditions, the constants a, b, ¢, d,

are evaluated and are

ar 2+ ¢l:¢’- (26a)
b = _qé,/z (26b)
c= =2 + %(%+8) (26¢)
where %, =.éLL( %é')*_(ﬂz) (27)

-l T
m B o= "/‘:( r-z(;) 2T £ ) (28

Finally, f becomes

f('?)s /= (I-7)3(/+7) * ?70_7/3_.?7//-7/ Z(/*27) (29)

17~



Tangential Velocity Profile

Similarly, the tangential velocity profile can be written as
sV 2 At bnrentrdnsen®

— 0
4" 777 77 (30)

The boundary conditions are:

3:0 ) ‘U'Ir'w ) Q’I);?:-o

Vv = UV av
;-A’M—V, "5—7"0/ Q?)é‘a %_ ,;UZ;

or in terms of g and 7

7=°) ?":-_‘-?'/“S > 3‘4‘7=0

T s

The constants evaluated are

a= |-S (31a)
b= IS+ ?5:/4 (31b)
c=0 (31c)
ad= =25 -9, (310)

[

[ ]

w
+

5
o~

(31le)

Finally, g becomes

§=1-S (-1P(47) + s (19) (0 s 2) G

-8-



Following the line of thinking similar to Bohlen-Holstein's
method, shape parameters can be introduced as in the

Karmen-Pohlausen technique. (3)

It will be apparent later that it was convenient to intro-
duce the so-called 'shape parameters', which in this case

are defined as

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)



From the definitions of ) ) ¢,_ ) ¢3 5 and S, which are

= h* _ L2 - L
and defining A,-_\)‘k ﬁv(__’_") ) ).l- %_;I N )\3- %L_g

2
and 14 = l\_-_q_@) d).) dbz) d}_’)and S can be written in

terms of ).U),_) A; and ’/\4 alone.

hence:

b= X+ }f

This is evident by the following relations:
¥g - 4 (5 VA(Y
"L () =Yz (e )’ﬁ(ﬂ};)-&_}{id‘%{‘

-0

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)



and similarly,

$EE 400 22 4

(51
From the definitions, d./ 9/.,1/-/ qu/ /a*it is readily seen
that after integration
L f( ZL R
|20 (52)
__qf f—f(:-J)A =3 - ¢_'._4>. 190 + 5¢,¢
-r
175 o7z T 5 ;;;%‘ To7o (53)
I
S fy- (194
Sl Ta= )ay) - 35 - -238 -19¢ /'S
h -~ V) % e u.Z%o M 7::& Nt
l
Obw = fy= | #0-9)dv= S 4 11541 - 23é2S _ds , 23
= % ’f" L ¢30 02§ T3oid 4o h;?;
- 5¢1¢§ -+ /qﬁtdﬁ
/8 |44 226 80 (55)
Hence, it is seen that the shape factors satisfy the
universal relationships, that is
K= Qi.'.' Eﬁ’_“): :"zz.hf,:_@") = 7‘2231 (56)
vy U v T
K. = £.522
(57)
c
= X
l<'5 '.;7— 3 (58)
2
K+ a ';z )\4_
(59)
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Having defined the shape factors Ki’ their expression can be

introduced into the momentum integral equations.

Equation (23) can be written as

¢ ¥
Uzc_lz%: + 29,;(/'%5’ + ?_;»_':U +‘V£f (W*-h)

b WU X - @_vy% L -

Multiplying equation (60) by Q"’/.)'U—
and recalling the definttions of :(, (K ) {1. (’(4) fbfl(t)pyp 7[4[(‘
given by equations (52), (53), (54), and (55), and the relation

%Qa =(Z+ é%T"’ﬁA)v’z(K() = F (k) (61)

2
one obtains, using the definition of ‘7&= eu N

(hence, d '¢/dm= _g 94, dI%: ,>t:he following equation
I d \D KAy — §
2 TEJ' K3+-?£-(K'+-l2hb) l<;%.

sy [ee A=) = Fls)

(82)
Let
RK)= F (K K .L
‘ 1) { 3*3 (K‘ a _K {}} (63)
and F‘%(Kﬂ-.-‘l{—:f, -A1
i (64)

one obtains
sz%-r"l’%"{ﬁ-ﬁ (65%)

-12-



In a similar manner, the second momentum integral equation can

be written as

vi¥, g KT+ ¥47 - A

where F"7 = }:"_.;:3

Fe =z K 22._ A
£ !»('*% J;»)

/;; = fé;i sz _ L
Ko 7y Fr

6 = K2 [H:7 (254 4,)]

e -_
from the definition K, = }b};g&

one can obtain i /(Z = d‘[/‘
d/z,//L ) %d'/u— +—V%

Equation (65) and (66) subject to the conditions of equation (70)

or (71) contain three unknowns; that is, U, V, and h.

Equation (71) is merely an identity introduced for convenience in

performing the numerical solution. The third equation needed for

the complete solution is one which is obtained by considering the

energy equation which relates the value h to the value 1) under the

temperature differentials imposed.

The final set of differential equations will appear as

E;%?- = tf'( v, Fe Vo)
g_Tf: V(YF ¥ -

fg:éL = A. [TL/& /:) AT ~)

where (72c) is obtained from energy considerations.

-13-
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(68)

(69)

(70)

(71)

(72a)

(72b)

(72c)



These equations generalized to'include energy equations correspond to the

Karmen-Pohlausen method, but in rotational symmetric coordinates.

2.2 Special Case: Viscous Forces Predominant

As mentioned before, the range of interest in the problem would
be that corresponding to the equations with no inertial terms.
If this is assumed, the following relationships are known:
V= Yuw
2 2
5= 0, .= by = W( Flw)y xut)
_ 1”2 v
g = l) +5 =0 -"f*.

From equation (61)

ﬁn.__-QU = 2T ) = ZQD (73)
T BT (8) -

But also from equation (60), neglecting the inertial terms,

- Y 1 rw?)s )y = U P
%‘L“v—(%”ﬁ‘ﬁ)) HU%Z T (74)

. 2 2
From 73,74, $=2 =_&0¢ ( f_%“_'h L_S_J ) (75)
Since#s 2, the function f becomes
fh= 27" (76)
/
7‘/ (K‘:)= ;-g--r Zé; = 7% +.3Lo = -b/ = _[(/"f)17 an

- /- A
“UCCI # - i (78)

-14-



Energy Equation

Using the Nusselt approximation, the energy equation is reduced
to the Fourier conduction law across the condensate thickness.

Hence, in the annular region of area 2 rdr, the heat flow dq is

(79)

dq = R (emndn X(T-T,,)
A

This exchange of heat is related to the amount of condensate
formed by the relationship

d= 1dQ@ (80)
where dGE is the amount of condensate added in the differential

area under consideration.

The flow of condensate in the radial direction is given by

G =anrph® (81)

where$ris the average velocity, radially.

Using equations (78) and (75), one obtains

& =277Mkl U= :zrmph(_;f)[ FMHV«)”J

Defining ,cm_ &) m H=h(4) “ (82)
® = J’T'v PH’(”D) /"(H #(n) ) (83)
Therefore, 81nce Q=¢q(H, r). '
dQ-—"_%%dm*'@a%M (84)
2B = amaF Plo3) - H(1+§() 5

,%% . z_r%P (w » It W3 [I"Li)(”.f )2 (1+-4 )J (86)

-15-



Using equatioms €843, «B5: 785) and 779)

Alamr ;r«i(r—fw= anrtf (w) “ pr4) di

+ 2—?(“"’) e [/"L%(H--!) +22(144) ] (87)

Making the following substitutions
- I=Tw 62 s C(T7Ts=-Tw)
r r N P
reduces equation (87) into the following form.

&7 ‘*é’:%[h‘")(l-fv’) +_t:f(/?-di; (1+4) +2(1+5) )

(88)

The Clausius-Clapeyron equation relates the pressure to the temperature,

namely _ 1"4
(‘%{1 - Ef‘f (89)
Integrating,
bop = - M { F-1 }
s R7s [ # + Tu
% “Tw
(90)
Hence,
7 + Tw eTs W B
T(/L) = AT \M - Fe
1= RTs L?
™o (91)
Finally, one can let Yz(H ‘/SA 6‘) (92)
and obtain
%\/:—gi -ﬁ\r{%.«(lﬂc)*—zj (93)
Sr 114 3 U +9 S

All that is needed is to prescribe P(/.,), and solve equation (93)
numerically. Note chat at R = 0, ay —» 0/47‘ Y= %;*-{

-16



Particular Case: (P)r) Is Assumed Parabolic

2

A parabolic pressure distribution is assumed where P = g + br (94)
The boundary conditions are:
Psfe atr=o | ' (958)
=P .
Hence, 12
=/ + (A = z
a | + (A =1) ¥ (96)
where E = o= Pe
o’ s (97)
From equation (96), 2P _ P. D P 'DE
= Fg L
'75.. ag('P.,)ag;:
P = Ps 2¥(x-1)
A Ro
we, )= =-LOP anyg $(a) = Fln)
But, f_(ﬂo e Y * FerQ_
Hence, .{(N) = ZL%“B) - ConNsT
P‘QotQJz
(98)

L gy
Whinge T(E )a I+'%1L_ E%% ﬂm(’w@(-ugz)
l—%k(u@u:‘)

(100)
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Equation (99) can be simplified further by letting,'U'.rY(H!)resulting in

%SU-: §7'=(§> —_gg (101)
1

subject to the initial condition U(0) =

Equation (101) can be solved numerically by using a Runga-Kitta.

integration procedure.

APPROXTMATE SOLUTION

Equation (101) possesses a solution which by general theory of first order

equations can be written as

¢y JPd%
'U'(E)ef 43 =/@(§)e 4__§‘ + CoV8T (102)

he * B (103)
wheze  P(E) :
&(%) = 7’(§) (104)
f rde
The integration of 4[5)6 is not possible analytically, due to 6(5),

However, under certain conditions 9(‘ Jmay be simplified in the following

manner :

The value of the function ln (l- n) can be written as

%(/_7) ‘-7_.472-/75»--»»-. (105)
for ’7:02 A.[/—-Z)-—dz—_l (04)

> ’ —alLt'—

as compared to the exact value of 0.2225.

-18-



If 77 - (-=) ¥ ¥ since the maximum value of E =), the approximate
polynomial expression will be good for the full range of &for «20+8
For values of o {6 8§ , the accuracy,” of course, decreases. However,
for estimation purposes, it is desirable to formulate the solution to

equation (101) analytically.

Using the approximation of equation (105), but omitting the cubic term,

transform equation (101) to

7‘—(7/—.- |=Ka K (744 77‘)/( /+K, (7,*477-))

where f<2_ = _Z_-b;_/,' 5 K, = f.;":
A

Since K, < /)4' £ | , the denominator. of equation (106) can be
written as ///+é Wwhere € <¢ |

Hence, 1‘-‘(.7) - E—sz,n(w%n)][;— <M1+ )]

Tlh)= 1=K (14£1) (1 + k)
neglecting higher order terms,

Rence, T(¥)= '-%&)[ow g (1784

Using the results of equation (109) in equation (102)

' - g / §% [ 1- B (5) (195" 05" dg +coisr

Hence U~ (*g) after integration becomes

V- o = [ufeh Ty S

=) L(~IE" 4y (R)78% 0 = =R (g2)
M /N AT

Figure (/7 shows a plot of -ﬁ(f,d-) withj as the abscessa '.aﬁd & as

parameter.

-,
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3.0 DISCUSSION

The dimensionless condensate thickness for the special case of zero pressure
gradient is shown in Figure (3). The results agree extremely well with those
of Sparrow and Gregg (2). The distributions of condensate thickness for
various pressure gradients resulting from an assumed parabolic pressure

distribution are shown in Figures 4 to 15,

The results are divided into four sets at a constant pressure ratio and

varying source pressure. The abscissa of the curves is the dimensionless
radius ratios . The ordinate of the curves is essentially the ratio of
dimensionless condensate thickness with pressure gradient to that of zero

pressure gradient, that is,

/
p%=H [ 1+ 270=-) &
Hise PAFO* (112)

where H = A[‘.’g) 1/1"

and /JISo = @,é'éj-

//*
The curves of (/ versus the radius ratiO'S , show for a given value of
/
source pressure and pressure ratio, U aincreases with increasing tempera-
ture difference and decreasing radius. As the radius ratio approaches zero,

)
the value of Uaapproaches 1, independent of the temperature difference A7 .

[
As the value of the angular velocity®w , approaches zero, the value of “4

becomes

4R 0N ] %
30k ATL,*

Ul/" ak =h
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where K is determined as a function ofr, and AT, For values of AT large,

% | . Therefore,
Zi
Z 47 (-0 2 )

An interesting aspect of the condensation in the central region of the
bearing can be seen by referring to Figure ]'.8. Figure 18 shows a plot

of the dimensionless condensate thickness ! ""versus the temperature dif-
ference E-Tw at S = 1 for various pressure ratios and at a constant
source pressure of 200 psi. From this curve, it is readily seen that the
height of the condensate layer at the outer radius of the central region
is very sensitive to the temperature difference. For a given pressure
ratio of , a narrow range of AT exists at the extremes of which the bearing
will respectively be dry or attain a maximum thickness of condensate at
the exit of this region. This effect of temperature difference on the con-

densate layer can thus cause extreme variation in the operating character-

istics of a particular bearing.

Figures 4 through 19, also indicate that for a given source pressure and
pressure ratio there exists a temperature difference such that the conden-
sate layer becomes zero at S = 1. These points are plotted in Figure 16,
where the ordinate is chosen at ;—ZA.;_ instead of Jg-Ju, the abscissa being o ,
the pressure ratio. At a constant source pressure, hence a constant source
temperature, as 7, -’7.5) gf-; —» 20 and hence a dry condition is prevalent
at S =1. As T;.7w gets larger, a fully wet bearing at E = 1 can result.
Hence, for any constant source pressure 7} , Figure 16, shows that if T‘V/Ar
is above the curve, a dry bearing will always exist at g =1, the reverse

being true, if the ordinate is below the curve, ?,-cwsr .

-21-



The effect of ¢J /‘/f- versus g in Figures 4 through 15 shows that for a
given 47, especially where this AT leads to a dry bearing at % less than
1, that the values of L)ok change' very rapidly near the point where
reevaporation occurs. An explanation of this fairly rapid change in con-
densate thickness can be attributed to the effect of condensate '"thin-
ning' caused by a temperature difference which is now negative (that is,
the disk temperature is higher than the vapor at the particular radius)
and the continuously applied centrifugal force. Before the temperature
reversal, these two effects opposed each other, that is, thinning down

of the condensate increases the condensation rate. When this point is
reached, these two effects are additive in the sense that they both work

in the same direction.
The condensation process as formulated in the report proceeds until the

point is reached where the saturation temperature of the vapor is

equal to the given wall temperature. Beyond this point the wvalidity

of the present analysis is in question. The present equations predict
reevaporation over a small radial increment which also infers a ne-
gative temperature difference between the wall and interface. This
situation that occurs where the liquid temperature at the wall is
greater than the vapor temperature is in disagreement with the initial
assumptions of thermodynamic equillibrium. A new self consistent
physical model needs to be formulated for the evaporation process.
Whereas the present analysis cannot be depended on to describe the
evaporation process precisely, it does suggest that the evaporation
takes place in a small radial distance. The existence of a superheated
fluid at a temperature above the corresponding saturation temperature
is a phenomenon which is attributed to a process which is not in thermo-

dynamic equillibrium but rather one where a boiling process is prevalent.
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4.0 CONCLUSIONS

1. For a given degree of subcooling, the condensate film thickness
near the axis of rotation is strongly dependent on the magnitude of the
radial pressure drop (See Fig. 18). Hence, the ratio of mass flow be-
tween the liquid and the vapor phases entering the bearing region is in-
fluenced by both these parameters.

2. The limiting case of zero radial pressure gradient is obtained
from the present analysis which agrees with the work of Sparrow and
Gregg (2).

3. The limiting case of zero angular velocity reduces to the case
of condensation in axisymmetric flow. The results for this case can
readily be obtained by using the same curve in this report as pointed

out in the Discussion.

5.0 RECOMMENDATIONS

1. The results contained in this analysis can be used as the initial
conditions for the two phase lubrication equations which are derived in
reference 1.

2. The present analysis is applicable to the rotating condenser.
Further study of the implications of the analysis to a condenser should be

evaluated.

-23-



h*

(2}

€ <4 ¢

W W o™ X I N

[}

rg
la]

o O

[ ] - =S 13 -
£ O w

NOMENCLATURE

(All dimensional quantities are in consistent units)

Specific Heat

Condensate Thickness

Displacement Thickness of Condensate, Defined by Equation (52)

Thermal Conductivity
Heat Flow

Radial Coordinate
Radial Velocity
Tangential Velocity
Axial Velocity

Axial Coordinate

Dimensionless condensate thickness, ¥ h(

Molecular Weight
Pressure

Source Pressure
Final Pressure
Prandtl Number
Mass Flow

Gas Coolant
Temperature
Source Temperature
Final Temperature
Disk Temperature

Dimensionless Temperature
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N> E LW

P

R o]
Pressure Ratio, 7
]

&/n
¢ (f:-?’q)/),P,

Dimensionless Thickness,

Dimensionless Parameter,
Density

Dimensionless Radius, = %0
Kinematic Viscosity

Angular Velocity

Heat of Vaporization

Shearing Stress
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APPENDIX
The case of condensation on a rotating isothermal surface can be analyzed
using the approximate integral method, which leads to a solution which is

in agreement with that by Sparrow and Gregg. (2)

Since the pressure gradient is zero, (that is, F(r) = 0), equation (15)

can be written as
A h jk‘"
2 oy [ G by | Ly

and equation (16) as

5 jt)m(v-—‘v)d ) Jku”'(‘o '*jk;"“‘%y-”‘”ﬂf’ (1-2)
nly [ RS o i~ XD

Defining :r;é'bh’ being the condensate height, (in this case, a constant),

and letting

/ -
u=p Flle) = A%F (1-3)
v=1§(%) (1-4)
U= ,Ah.(.o (1-5)
V= htd (1-6)

Equation (I-1) becomes
/ / / o
2 ), _ Flde = AS = = J u
“é 3F'% /¢ "I‘/o 3 4‘5 ‘DS}'/o

(1-7)

and equation (I-2)

/’ "(2F'§-anF)dy = -_5{%—/0 (1-8)
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The velocity profiles F(‘S) and G(f)are assumed to be polynomials, which
satisfy the boundary conditions and the original differential equations.

Assume | F(r)to be a fourth order polynomial, that is,

Flx)= a+b% +C3v+dx 3+ €x¥ (1-9)

The conditions:which govern the constants a, b, ¢, d and e are:

F( =0 (I-10a)

F'(0) = O (1-10b)

Fl(l) = pW (1-10c)

F''(1) = O (T-10d)

P10 = -—co"‘U/q (I-10e)
Thus,

2_wed 2/ et 3,3

F(x)= égz(és -34) +0_;_8% (¢s% ge33%%) 11D
The tangential velocity profile G(§) is determined by

G'[S) = a+ b5+ cr':rds’ subject to the conditions (I-12a)

G(0) = W (I-12b)

G(1) = etw (I-12c)

G'(l) = (1I-124d)

G''(0) =0 (I-12e)
thus

¢ (8) = W [/"" (’;.:)(37'3‘3)7 (1-13)

Substituting equations (I-11) and (I-13), and their corresponding
derivatives into equations (I-7) and (I-8) and performing the corresponding

intergrations, result in

-_g_é{gup[g-, Hrag ] + %:‘.‘5 - 3-(r5 +(~f% (1-14)

Lo -] =[5 43] = & [ 7]

where ”22 _‘:_D_‘Ub
v
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The total mass flow iP the radial direction is given by
¢ﬁ = Jﬂyﬂa.k.é uin 3) Ay
but 26(%8)= A F(s)

vhere Flfg)= puw/33-33 4:[s-25% 33
Fils)= ag(35-5%) + wi"[3-25%57]

Substituting equation (I-17) into equation (I-16)

Gm aMpR2wW L 8 ph + wl-%‘,‘,_']
since 4G =dF/ - 4 (2Tn)dr, 6T/ 4,

and q-e 6[@)
. AT = Ak +wWh?
o, A {zzr;z}v 471 Prw [ £ +Ta"5j

Evaluating equation (I-20) in terms of H,

2 -%
”a-,-/?ﬁ{[/-r;'/;_z%- ~}

where 92 = _C__él'

The éoluti:m of H, &, and Aas a function of 9 are sought which can be
determined uniquely from equatioms (I-14), (I-15), and (I-21).

Simplified Solution
Equations (I-14) and (I-15) are considerably simplified if H is

considered small, compared to unity.

Equation (I-14) reduces to

ﬂ"’,«% = 3-8()+ (1-)"¢ r
35 H*E 5

and equation (I-15) reduces to

’—%{/—o&) = .7% (¢7o<+73)
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(1-17)

(1-18)

(I-19)

(1-20)

(1-21)

(1-22)

(1-23)

(I-24)



This results in 2
mx WY

(- = /S //4

Substituting these results into equation (I-21)

L?/%)V‘ e '/I.
(;42)'AL e
I~ 7 6%

The results agree with the work of Sparrow and Gregg, as shown by

H
ot
"equation (&) of this report.

A solution for large values of H was performed numerically by
solving fordandP from equations (I-14) and (I-15) for values
of H. The value of p(H) from equations (I~14) and (I-15) were
solved graphically with equation (I=2) which involved Pversus H
for various values of §. This solution is shown in Figure 2.
The intersection points were cross-plotted to obtain Figure 3,

wheredt , ﬂ , and H are shown as functions.of o .
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